
62-1

Input/Output 62

In addition to transferring data to and from external memory, Intel Architecture processors can also 
transfer data to and from input/output ports (I/O ports). I/O ports are created in system hardware by 
circuity that decodes the control, data, and address pins on the processor. These I/O ports are then 
configured to communicate with peripheral devices. An I/O port can be an input port, an output 
port, or a bidirectional port. Some I/O ports are used for transmitting data, such as to and from the 
transmit and receive registers, respectively, of a serial interface device. Other I/O ports are used to 
control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:

• I/O port addressing.

• I/O instructions.

• I/O protection mechanism.

62.1 I/O Port Addressing

The processor allows I/O ports to be accessed in either of two ways:

• Through a separate I/O address space.

• Through memory-mapped I/O.

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions and a 
special I/O protection mechanism. Accessing I/O ports through memory-mapped I/O is handled 
with the processors general-purpose move and string instructions, with protection provided through 
segmentation or paging. I/O ports can be mapped so that they appear in the I/O address space or the 
physical-memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be completed 
before the next instruction in the instruction stream is executed. Thus, I/O writes to control system 
hardware cause the hardware to be set to its new state before any other instructions are executed. 
See “Ordering I/O” for more information on serializing of I/O operations.

62.2 I/O Port Hardware

From a hardware point of view, I/O addressing is handled through the processor’s address lines. 
For Pentium Pro processors, a special memory-I/O transaction on the system bus indicates whether 
the address lines are being driven with a memory address or an I/O address; for Pentium and earlier 
Intel Architecture processors, the M/IO pin indicates a memory address (1) or an I/O address (0). 
When the separate I/O address space is selected, it is the responsibility of the hardware to decode 
the memory-I/O bus transaction to select I/O ports rather than memory.

Data is transmitted between the processor and an I/O device through the data lines.



62-2

Input/Output

62.3 I/O Address Space

The processor’s I/O address space is separate and distinct from the physical-memory address 
space. The I/O address space consists of 216 (64K) individually addressable 8-bit I/O ports, 
numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH are reserved. Do not assign 
I/O ports to these addresses. The result of an attempt to address beyond the I/O address space limit 
of FFFFH is implementation-specific; see the Developer’s Manuals for specific processors for 
more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports can 
be a 32-bit port. In this manner, the processor can transfer 8, 16, or 32 bits to or from a device in the 
I/O address space. Like words in memory, 16-bit ports should be aligned to even addresses (0, 2, 4, 
...) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports should be 
aligned to addresses that are multiples of four (0, 4, 8, ...). The processor supports data transfers to 
unaligned ports, but there is a performance penalty because one or more extra bus cycle must be 
used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed to 
remain the same in future Intel Architecture processors. If hardware or software requires that I/O 
ports be written to in a particular order, that order must be specified explicitly. For example, to load 
a word-length I/O port at address 2H and then another word port at 4H, two word-length writes 
must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space. 
Accessing I/O ports through the I/O address space is thus a possible source of parity errors.

62.3.1 Memory-Mapped I/O

I/O devices that respond like memory components can be accessed through the processor’s 
physical-memory address space (see Figure 62-1). When using memory-mapped I/O, any of the 
processor’s instructions that reference memory can be used to access an I/O port located at a 
physical-memory address. For example, the MOV instruction can transfer data between any 
register and a memory-mapped I/O port. The AND, OR, and TEST instructions may be used to 
manipulate bits in the control and status registers of a memory-mapped peripheral devices.

When using memory-mapped I/O, caching of the address space mapped for I/O operations must be 
prevented. With the Pentium Pro processors, caching of I/O accesses can be prevented by using 
memory type range registers (MTRRs) to map the address space used for the memory-mapped I/O 
as uncacheable (UC). See Chapter 9, Memory Cache Control, in the Intel Architecture Software 
Developer’s Manual, Volume 3, for a complete discussion of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN# pin, 
which when held inactive (high) prevents caching of all addresses sent out on the system bus. To 
use this pin, external address decoding logic is required to block caching in specific address spaces.



62-3

Input/Output

All the Intel Architecture processors that have on-chip caches also provide the PCD (page-level 
cache disable) flag in page table and page directory entries. This flag allows caching to be disabled 
on a page-by-page basis. See “Page-Directory and Page-Table Entries” in Chapter 3 of in the Intel 
Architecture Software Developer’s Manual, Volume 3.

62.4 I/O Instructions

The processor’s I/O instructions provide access to I/O ports through the I/O address space. (These 
instructions cannot be used to access memory-mapped I/O ports.) There are two groups of I/O 
instructions:

• Those which transfer a single item (byte, word, or doubleword) between an I/O port and a 
general-purpose register.

• Those which transfer strings of items (strings of bytes, words, or doublewords) between an I/O 
port and memory.

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data 
between I/O ports and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit 
I/O) register. The address of the I/O port can be given with an immediate value or a value in the DX 
register. 

The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port) 
move data between an I/O port and a memory location. The address of the I/O port being accesses 
is given in the DX register; the source or destination memory address is given in the DS:ESI or 
ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions perform 
string (or block) input or output operations. The repeat prefix REP modifies the INS and OUTS 
instructions to transfer blocks of data between an I/O port and memory. Here, the ESI or EDI 

Figure 62-1. Memory-Mapped I/O

FFFF 

I/O Port

EPROM

RAM

Physical Memory

0

I/O Port
I/O Port



62-4

Input/Output

register is incremented or decremented (according to the setting of the DF flag in the EFLAGS 
register) after each byte, word, or doubleword is transferred between the selected I/O port and 
memory.

See the IN, INS, OUT, and OUTS instructions for more information.

62.5 Protected-Mode I/O

When the processor is running in protected mode, the following protection mechanisms regulate 
access to I/O ports:

• When accessing I/O ports through the I/O address space, two protection devices control 
access:

— The I/O privilege level (IOPL) field in the EFLAGS register.

— The I/O permission bit map of a task state segment (TSS).

• When accessing memory-mapped I/O ports, the normal segmentation and paging protection 
and the MTRRs (in processors that support them) also affect access to I/O ports. See Chapter 
4, Protection, and Chapter 9, Memory Cache Control, in the Intel Architecture Software 
Developer’s Manual, Volume 3, for a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing I/O ports in 
the I/O address space with the I/O instructions.

62.5.1 I/O Privilege Level

In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access to 
the I/O address space by restricting use of selected instructions. This protection mechanism permits 
the operating system or executive to set the privilege level needed to perform I/O. In a typical 
protection ring model, access to the I/O address space is restricted to privilege levels 0 and 1. Here, 
kernel and the device drivers are allowed to perform I/O, while less privileged device drivers and 
application programs are denied access to the I/O address space. Application programs must then 
make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of the program 
or task currently executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI (clear 
interrupt-enable flag), and STI (set interrupt-enable flag). These instructions are called I/O 
sensitive instructions, because they are sensitive to the IOPL field. Any attempt by a less 
privileged program or task to use an I/O sensitive instruction results in a general-protection 
exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register, each 
task can have a different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O 
sensitive instructions, allowing access to some I/O ports by less privileged programs or tasks (see 
“I/O Permission Bit Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; however, such 
changes are privileged. No procedure may change the current IOPL unless it is running at privilege 
level 0. An attempt by a less privileged procedure to change the IOPL does not result in an 
exception; the IOPL simply remains unchanged.



62-5

Input/Output

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and STI 
instructions); however, the POPF instruction in this case is also I/O sensitive. A procedure may use 
the POPF instruction to change the setting of the IF flag only if the CPL is less than or equal to the 
current IOPL. An attempt by a less privileged procedure to change the IF flag does not result in an 
exception; the IF flag simply remains unchanged.

62.5.2 I/O Permission Bit Map

The I/O permission bit map is a device for permitting limited access to I/O ports by less privileged 
programs or tasks and for tasks operating in virtual-8086 mode. The I/O permission bit map is 
located in the TSS (see Figure 62-2) for the currently running task or program. The address of the 
first byte of the I/O permission bit map is given in the I/O map base address field of the TSS. The 
size of the I/O permission bit map and its location in the TSS are variable. 

Because each task has its own TSS, each task has its own I/O permission bit map. Access to 
individual I/O ports can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the processor allows all 
I/O operations to proceed. If the CPL is greater than the IOPL or if the processor is operating in 
virtual-8086 mode, the processor checks the I/O permission bit map to determine if access to a 
particular I/O port is allowed. Each bit in the map corresponds to an I/O port byte address. For 
example, the control bit for I/O port address 29H in the I/O address space is found at bit position 1 
of the sixth byte in the bit map. Before granting I/O access, the processor tests all the bits 
corresponding to the I/O port being addressed. For a doubleword access, for example, the 
processors tests the four bits corresponding to the four adjacent 8-bit port addresses. If any tested 
bit is set, a general-protection exception (#GP) is signaled. If all tested bits are clear, the I/O 
operation is allows to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the 
processor read two bytes from the I/O permission bit map for every access to an I/O port. To 
prevent exceptions from being generated when the ports with the highest addresses are accessed, an 
extra byte needs to included in the TSS immediately after the table. This byte must have all of its 
bits set, and it must be within the segment limit.

Figure 62-2. I/O Permission Bit Map

I/O Map Base

Task State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O base map 
must not exceed 
DFFFH.

Last byte of bit 
map must be 
followed by a 
byte with all bits 
set



62-6

Input/Output

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses 
not spanned by the map are treated as if they had set bits in the map. For example, if the TSS 
segment limit is 10 bytes past the bit-map base address, the map has 11 bytes and the first 80 I/O 
ports are mapped. Higher addresses in the I/O address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O 
permission map, and all I/O instructions generate exceptions when the CPL is greater than the 
current IOPL. The I/O bit map base address must be less than or equal to DFFFH.

62.6 Ordering I/O

When controlling I/O devices it is often important that memory and I/O operations be carried out in 
precisely the order programmed. For example, a program may write a command to an I/O port, 
then read the status of the I/O device from another I/O port. It is important that the status returned 
be the status of the device after it receives the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in which the 
programmed order is not preserved by the processor. To optimize performance, the processor 
allows cacheable memory reads to be reordered ahead of buffered writes in most situations. 
Internally, processor reads (cache hits) can be reordered around buffered writes. When using 
memory-mapped I/O, therefore, is possible that an I/O read might be performed before the memory 
write of a previous instruction. The recommended method of enforcing program ordering of 
memory-mapped I/O accesses with the Pentium Pro processor is to use the MTRRs to make the 
memory mapped I/O address space uncacheable; for the Pentium and Intel486 processors, either 
the #KEN pin or the PCD flags can be used for this purpose (see “Memory-Mapped I/O”). When 
the target of a read or write is in an uncacheable region of memory, memory reordering does not 
occur externally at the processor’s pins (that is, reads and writes appear in-order). Designating a 
memory mapped I/O region of the address space as uncacheable insures that reads and writes of 
I/O devices are carried out in program order. See Chapter 9, Memory Cache Control, in the Intel 
Architecture Software Developer’s Manual, Volume 3, for more information on using MTRRs.

Another method of enforcing program order is to insert one of the serializing instructions, such as 
the CPUID instruction, between operations. See Chapter 7, Multiple Processor Management, in the 
Intel Architecture Software Developer’s Manual, Volume 3, for more information on serialization of 
instructions.

It should be noted that the chip set being used to support the processor (bus controller, memory 
controller, and/or I/O controller) may post writes to uncacheable memory which can lead to out-of-
order execution of memory accesses. In situations where out-of-order processing of memory 
accesses by the chip set can potentially cause faulty memory-mapped I/O processing, code must be 
written to force synchronization and ordering of I/O operations. Serializing instructions can often 
be used for this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in two 
respects:

• The processor never buffers I/O writes. Therefore, strict ordering of I/O operations is enforced 
by the processor. (As with memory-mapped I/O, it is possible for a chip set to post writes in 
certain I/O ranges.)

• The processor synchronizes I/O instruction execution with external bus activity (see 
Table 62-1). 



62-7

Input/Output

Table 62-1. I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current 
Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes


